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Abstract. It is shown that a Lagrangian of the form L = $ ( p 2 - 0 2 ( t ) p 2 ) +  &t)#(k(t )p) ,  
said to be in factored form, yields an equation of motion that is equivalent to the most 
genera! equation derivable via Noether’s theorem from the unfactored Lagrangian L = 
$jiz-P(p, t ) .  In view of this equivalence, the theory of extended Lie groups is applied 
to the factored nonlinear equation of motion C + 0 2 ( t ) p  = G(t )F(k ( t )p )  to obtain its Lie 
symmetries. The latter are obtained when G(t)  and k ( t ) ,  initially arbitrary, are determined 
in terms of a function x ( t )  which satisfies the auxiliary equation f + 0 2 ( t ) x  = K/x3 .  It is 
then possible with the auxiliary equation and the equation of motion to form a coupled 
pair of nonlinear equations, an Ermakov system, whose first integral is not invariant under 
the action of the symmetry group, in contrast to previous Ermakov systems. 

1. Introduction 

The existence of invariants (first integrals) for time-dependent nonlinear equations of 
motion can be useful in solving such equations. An excellent example is the invariant 

* / P  

I = $ ( x b - i p ) ’ +  J f(A)dA+/’/’g(A)dA ( l . l u )  

for the coupled pair of equations 

6 +&P = f ( x l p ) / b ’ x )  (1.lb) 

and 

x + W 2 ( t ) X  = g ( p / x ) / ( x 2 p )  (l . lc)  

where overdots indicate differentiation with respect to t. The quantity I is invariant, 
i.e. 1 = 0, if p is any solution to (l . lb) and x is any solution to (1.1~). The pair of 
equations (1.lb) and (1.1~)  together with invariant ( 1 . 1 ~ )  is called an Ermakov system. 
A review of the literature on Ermakov systems with their applications is found in 
Ray (1981). 

A natural question that arises in studying Ermakov systems, and the question we 
address in this paper, is the following. To what extent can one start from an equation 
of motion of a more arbitrary form, say, 

f i  + 0 2 ( t ) p  = P(p, t )  (1.2) 
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2752 J L Reid and J R Ray 

and determine the explicit form of P(p, t )  such that (1.2) will possess an explicitly 
time-dependent invariant of the nature of ( l . l a ) ?  Several different approaches have 
been used to study this question. Probably the most successful approach so far is the 
application of Lutzky’s version of Noether’s theorem (Lutzky 1978a, Ray and Reid 
1979a, Ray 1980). We briefly review Lutzky’s approach below. 

A system described by the Lagrangian L(p, b, t )  has a Noether symmetry associated 
with the group operator 

x = t ( p ,  t ) a / a t  + v (P, o / a p  

X‘”L + &L = @ 

(1.3) 

if there exists a function 9 ( p ,  t )  such that 

(1.4) 

where X‘” is the generator of the first extended group, i.e. 

x(’) = x + (+ - & ) a / a p .  (1.51 

If the system possesses a Noether symmetry then the Noether invariant follows from 

(1.6) I = t(baL/ab - L )  - qaL/ai, + 9. 

L = i ( $ - 0 J 2 ( t ) p 2 ) + P ( p ,  t )  (1.7) 

Ray and Reid (1980) applied Noether’s theorem to the Lagrangian 

where fi is initially an arbitrary function. For this Lagrangian Noether‘s theorem 
leads to the Ermakov system 

b + 0 J 2 ( t ) P  = f ( x l p ) / ( p 2 x )  ( 1 . 8 ~ )  

x +u2(t).x = K / x 3  K =constant (1.86) 

with Noether invariant 
x /  P 

I = 1 ( x p  - i p ) ’  + f K ( p l x  l2  + I f( A ) dA . ( 1 . 8 ~ )  

This Ermakov system is, of course, a special case of (1.1). In system (1.8) the auxiliary 
function x ( t )  is associated with the time part of the symmetry operator, i.e. 5 = x 2 ( r ) .  
The fact that 5 does not depend upon p follows from Noether’s theorem. In arriving 
at system (1.8) we assumed that function &p, t )  was of the factored form 

F ( p ,  t )  = G ( f ) F ( k ( t ) p ) .  (1.9) 

More recently, Leach (1981a) applied Noether’s theorem to the Lagrangian 

L=’.2- 2 q  V(q, t )  (1.10) 

without the factorisation assumption (1.9). He is able to do so by solving the Noether 
equation (1.4) directly using the method of characteristics. Leach’s results give the 
equation of motion 

~ = X ~ / X + ( B X - B X ) / X ~ - G ’ / X ~  (1.11) 

where x ( t )  and B( t )  are arbitrary functions and 6 = G ( q / x  + J  ( B / x 3 )  dt). The prime 
on G in (1.11) indicates differentiation with respect to the argument of d. Leach 
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showed that the Noether invariant has the form 

I = P ( x ~  - f q  + B / x ) ~  + (1.12) 

Here again x ( r )  is associated with the time part of the Noether symmetry, ,$=x2(t ) .  
The invariant given by (1.12) is a first integral of (1.11) for arbitrary x ( t ) ,  B(t) ,  and 
6. Thus Leach arrives at the most general equation of motion of the form 

(1.13) q = -a V(q, t) /aq 

which has a Noether invariant, namely (1.11). 

out a transformation to a new dependent variable 
We now compare Leach’s results to those of Ray and Reid (1980). First we carry 

p = q + x  ( B / x 3 ) d t .  (1.14) I 
Equations (1.1 1) and (1.12) then take forms 

p = ip/p/x - ( 3 7 x 3  

I = $ (xb - xp)2 + 6 ( p / x )  

(1.15) 

(1.16) 

respectively. Transformation (1.14) has the effect of eliminating the function B( t )  in 
(1.11) and (1.12), and at this stage x ( t )  remains an arbitrary function. We can introduce 
another arbitrary function W 2 ( t )  such that x satisfies the equation 

2 = - -W2( t )X  + K / x 3  (1.17) 

without loss in generality of the function x ( t ) .  Using (1.17) in (1.15), we have 

p + o 2 ( t ) p  = K p / x 4  - 6 ’ / x 3 .  (1.18) 

Now by replacing the arbitrary function & / x )  by another arbitrary function f ( x / p )  
such that 

(1.19) 

GI = K p / x  - f ( x / p ) x 2 / p 2  (1.20) 

we find 

Leach’s invariant (1.12) now has the form 
x f  P 

I = I ( x b - f p ) Z + f K ( p / x ) ’ + I  f(A) dA. (1.22) 

The net result of our rearrangement of Leach’s results are equations (1.17), (1.21) 
and (1.22), from which it is clear that his results are equivalent to the earlier results 
of Ray and Reid (1980). 

One important lesson we learn from this discussion is that the factorisation 
assumption (1.9) gives the most general results from Noether’s theorem. Note that 
transformations of Ermakov systems such as (1.14) are further discussed by Sarlet 
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(1981) and Sarlet and Ray (1981). Such transformed Ermakov systems arise in plasma 
physics problems (Lewis 1981). 

It is well known that Noether’s theorem is not the most general group theoretical 
structure for the investigation of symmetries of differential equations (Lutzky 1978b). 
The Lie theory, which directly investigates symmetries of differential equations, is a 
more general structure than Noether’s theorem. In the next section we apply Lie 
theory to investigate the symmetries of (1.2). This analysis will automatically include 
any Noether symmetries, since every Noether symmetry is a Lie symmetry. 

2. Lie symmetry 

We are interested in imposing Lie symmetry on the equation 

~ ( p , p ,  t ) = i j + W 2 ( t ) p - - P ( p ,  t ) = O .  (2.1) 

The generator of the symmetry transformation takes the form 

x = 5 ( P ,  t)a/at + d p ,  t)a/dp. (2.2) 

We shall also need the generators X‘” and X”’ of the first and second extended 
groups; these have the forms 

xi1) = x + p a / a ~  p = -&j (2.3) 
x‘2’ = x‘” + 77(2)a/ab (2.4) 

respectively. The equation of motion (2.1) is invariant under the symmetry generated 
b y X  if 

( 2 . 5 )  

rl (2) = .;i - & - 2kC; 

x‘*’R(~, c;, t )  = o 
whenever 

a ( p ,  C;, t )  = 0. 

There is a large amount of literature on the Lie method, and a recent article by 
Meinhardt (1981) contains earlier references. Of particular interest to this paper is 
the work by Leach (1981b): If (2.5) has nontrivial solutions for &(p, t) and ~ ( p ,  t )  
then (2.6) possesses a Lie symmetry, and an invariant may be found from the equations 

(2.7) 

(2.8) 

In order to compare this with our earlier results using Noether’s theorem (Ray 
and Reid 1980) we impose the factorisation assumption on P(p, t) in (2.1). This means 
that we seek conditions under which the equation 

(2.9) 

has a Lie symmetry. Although the assumed form for P(p ,  1 )  will certainly reduce the 
generality of the equation (1.2), we are optimistic since the factorisation assumption 
gives the general solution in the case of Noether’s theorem as we have shown in the 
preceding section. 

x ( ’ ) I ( ~ ,  p, t )  = o 
dI(p, p, t)/dt = 0. 

C; + u 2 ( t ) p  - G(t )F(k ( t )p )  = 0 
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3. Application of extended Lie symmetry operator 

In this section we apply the second extended symmetry operator (2.4) to equation of 
motion (2.9). Having assumed 6 = [(p, t )  and 7 = ~ ( p ,  t ) ,  we find that 

~ ( l ) = ~ r + ~ ( ~ p - ~ r ) - ~ Z S p  (3.1) 

vc2) = ~ r r  + b (2qpr - t r r )  + b ' (7p .o  - X p r )  - t j 3 6 p p  - 2tr - 365,) (3.2) 

where the subscripts p, t indicate partial differentiation with respect to those variables 
and the overdot means total differentiation with respect to t. The operations implied 
in (2.5) lead to the condition 

q ( 2 ) + ~ 2 7  - GF'k7 +2w&p5 - (GF + GF'k)e = O  
F' = aF/a(kp) 

(3.3) 

and the requirement that (3.3) be satisfied on the manifold of solutions of fi is met 
by substituting $ from (2.9) into q(2) in (3.2). When $ is thus eliminated, (3.3) becomes 
an identity in b. Setting equal to zero the different powers in b then yields the set of 
partial differential equations: 

p3=ssPp = 0 (3.4) 

P2*77pp-2rpr = o  (3.5) 

p I$ 2qpf - & - 3 GF5, + 3w2p& = 0 (3.6) 
bo I$ 7 r r  + w '7  + (70 - 2&)( GF - W'P ) + 2 ~ & &  - GF'7 - e( GF + GF'kp) = 0. (3.7) 

Equations (3.4) and (3.5) imply 

S(P, t )  = a ( t )  + b ( t )p  (3.8) 

V ( P ,  t )=&)p'+c(t)p + d ( t ) .  (3.9) 

With use of these last two equations one may bring (3.6) into the form 

3(b + w 2b)p  + 21. - U - 3 GFb = 0 (3.10) 

which is an identity in p. We assume at this point that the arbitrary function F(kp)  
is neither constant nor linear in its argument. These restrictions are not severe 
inasmuch as (2.9) represents linear oscillators when F is constant or is linear. It now 
follows from (3.10) that 

b=O ( 3 . 1 1 ~ )  

21.-&=O 2 c = a + a .  (3.11b) 

We point out that symmetries of the linear oscillator with constant frequency were 
found by Anderson and Davison (1974), Wulfman and Wybourne (1976), and Lutzky 
(1978b), while those of the linear oscillator with time-dependent frequency have been 
obtained by Eliezer (1979) and Leach (1980). We shall proceed from this point on 
the assumption that F has no constant or linear term. Note that (3.11b), though 
simple, is highly significant because it introduces a non-Noether symmetry through 
the constant parameter a. 
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Taking account of (3.11) we can reduce expressions (3.8) and (3.9) to 

[ = a ( t )  

77 = $ ( c i + a ) p + d ( t )  

respectively. Consequently, (3.7) becomes the equation 

(3.12) 

(3.13) 

( a a + 2 w 2 a  -2wGa)p + d + w 2 d  -dkGF’ 

+[$(a - 3u)G - aGjF -$ (2a i  + uk +ak)GpF’ = 0 (3.14) 

implicitly an identity in p through F, F ,  and pF’. Due to our assumptions above on 
F, defining equations for a and d follow from (3.14), i.e. 

U+4w2(t)d +4w& = 0 

di + w2(t)d = 0. 

(3.15) 

(3.16) 

The remnant of (3.14) is still an identity in p, and, in order to proceed with the 
calculation, we make assumptions on the relationship between the functions F, F’, 
and pF’. Should a linear relation hold between those functions, or any two of them, 
then all, or a pair, of the terms remaining in (3.14) would become additive. We shall 
treat this situation in the next section. Certainly, if those three functions are linearly 
independent it is possible to write the following equations: 

F + a G + $ a G - a  = O  (3.17) 

p F ’ j a k + i ( u + a ) k = O  (3.18) 

F ’ + d ( t )  =O. (3.19) 

Solutions of (3.17) and (3.18) are 

a3I2G = exp( $a  1 $) 
a”2k =exp( -$a  $) 

(3.20) 

(3.21) 

respectively. Thus the previously arbitrary functions G and k are specified by (3.20) 
and (3.21), respectively, if the equation of motion (2.9) is to admit Lie symmetries. 
Upon multiplying (3.15) by a, integrating, and using the substitution 

(3.22) 

We are now able to state the first important result of this section. The second 

i ; + w 2 ( t ) p  - G ( t ) F ( k ( t ) p ) = O  (3.23) 

has the effect of determining G ( t )  and k ( t )  in terms of a( t )  = x 2  and a such that the 
equation 

i; + w 2 ( t ) p  = e x p ( a a T ) ~ [ e x p ( - a a 7 ) p / x ] / x ~  d7 = dt/x2 ( 3 . 2 4 ~ )  

x + w 2 ( t ) x  = K / x 3  (3.246) 

2 a = x  

it is possible to obtain an auxiliary equation identical to (1.86). 

extended Lie symmetry operator (2.4) applied to the equation of motion 
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has the Lie point symmetry generator 

x = x2a/at + ( x i  +$a)pa/ap. (3.25) 

Note that the pair of equations (3.24) is the Lie analogy to the Ermakov system (1.8). 
One may find an invariant for the system (3.25) in the manner of Ermakov (1880), 
i.e. by eliminating the frequency w’(t) between those two equations (Ray and Reid 
1979b). The result is 

I = ; ( x b  - ip )2+;K(p /x )2 - j ’ exp( iar )F(r ) (xb  --ip)x-’dt’ (3.26) 

for which dI /dt=O provided both equations in (3.24) are satisfied. However, this 
constant I is not a Lie invariant because condition (2.7) above is not satisfied by I in 
(3.26). We thus arrive at a second result, i.e. given the system of equations (3.24), 
the elimination of frequency technique leads to an invariant which is not associated 
with the symmetry group of the differential equation ( 3 . 2 4 ~ ) .  We shall call (3.26) an 
Ermakov invariant based solely on its derivation, and we merely point out its existence. 
No attempt is made here to investigate the significance or usefulness of (3.26), the 
integrand in which depends explicitly on solutions p(t) and x ( t ) .  For the case a = 0, 
results (3.24a), (3.246) and (3.26) are equivalent to our earlier results (Ray and Reid 
1980) based on Noether’s theorem. In that case, the Ermakov invariant is a Noether 
(and Lie) invariant of the symmetry group. We discuss in detail a generalisation of 
system (3.25) and (3.26) in another paper (Ray and Reid 1982). 

We remark that the argument, r, of F in (3.24,) and (3.26) is identical to a change 
of variables 

r = ( p / x )  exp(-iar) d? = dt/x2 (3.27) 

found and employed by Leach (1981b). (Actually, Leach’s transformation contains 
an additive term that vanishes when d is zero, as is the case here.) Simultaneously 
transforming both dependent and independent variables, (3.27) turns equation of 
motion ( 3 . 2 4 ~ )  into the autonomous equation 

r”+ar ’+Mr = F ( r )  r’ = dr/dr (3.28) 

where M = K +$a2. In r, r coordinates, invariant (3.26) takes the form 

I = $(r’-t-ar)2 exp(ar) + $ K ( p / x ) ’  exp(ar) - J exp(aT)(r‘+ar)F(r) d r  (3.29) 

while the symmetry group generator (3.25) reduces to the simple form (Leach 1981b) 

2 = g/ar. (3.30) 

For further discussion of (3.29) refer to Ray and Reid (1982). 

4. A special case 

In this section we again direct our attention to identity (3.14) for the special case 
when F and pF’ are linearly related, which occurs when 

F(p) =&I“ pF’ = m F  R =constant. (4.1) 
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We shall set the function k ( t )  at unity, and we shall continue to exclude the constant 
and the linear form of F. Under the foregoing assumptions (3.14) becomes 

[la + 2w 2a + 2w&a]p + d + w 2d - d d G p  m-l 

- [i (m + 3)6 + a G / G  + i ( m  - l )a]G& = 0. (4.2) 

The special status of the exponent m = 2 is apparent in (4.2). When m # 2, it follows 
that (3.15) still holds for a, that d = 0 and that 

This last equation is also valid for m = 2. The system of equations 

(4.3) 

( 4 . 4 ~ )  

(4.4b) 

now results instead of (3.24). For this case, an invariant analogous to (3.26) takes 
the form 

r = ~ ( x p - - p ) ' + ~ K ( p / x ) ' - ~ ( m  + l ) - ' ( p / ~ ) ~ + '  exp[-$(m -1)arI 

+ a k ( m  - l ) (m + l)-' exp[-q(m - l ) a r ] ( p / ~ ) " " x - ~  dt'. (4.5) 

Consider next the case when m = 2. The terms in (4.2) now combine in such a 
way to yield a more complicated equation for a, i.e. 

dt ' 
ii'+4w26 +4wha - 4 ~ d a - 5 / 2 e x p ( - f a  ;) = O  (4.6) 

where a is coupled with the function d. In this case, d satisfies (3.16). Equation (4.6) 
is identical to a result in Leach (1981b). It is clear from (3.10) that the function b(t) 
will never be a consideration in the discussion of the symmetry groups of nonlinear 
ordinary second-order differential equations of the type (2.9). For the linear oscillator 
equation (see, e.g., Eliezer 1979) it is known that b satisfies a second-order equation 
identical to (3.16). In view of the fact that any second-order ordinary differential 
equation can have at most an eight parameter group of point symmetries, it follows 
that the nonlinear second-order equation (2.9) may have at most a six parameter 
group. We note that the nonlinear equation at hand, i.e. 

p + w 2 ( t ) p  = G ( t ) p '  G(r)=l? exp(-ia..r)a-"* (4.7) 

where d r  = dt/a, where a satisfies (4.6) and where d satisfies (3.16), possesses the six 
parameter group of point symmetries. 

5. Conclusion and discussion 

Assuming a Lagrangian of the form 

~ = p ' - P ( p , t )  
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Leach (1981a) found the most general equation of motion that has a Noether symmetry 
by solving directly the equation 

We have shown in this paper that Leach’s solution is equivalent to applying the 
Noether symmetry group operator to the Lagrangian 

L = $ ( p 2 - w 2 ( t ) p 2 ) + G ( t ) f i ( k ( t ) p )  (5.3) 

in which the function &I, t )  appears in the factored form shown in (5.3). Encouraged 
by this equivalence of results, we have applied the Lie theory of extended groups to 
the nonlinear equation of motion 

Using the Lie theory we have discovered a more general type of Ermakov system 
than follows from Noether’s theorem. The system has the form 

(5.5a) 

(5.56) 

and 

I = i(xcj -ip)’+$K(p/x)’-l exp(iar)F(r)(xb -Xp)x-’ dt ( 5 5 )  

where r = (p/x) exp(-$cu) and d7 = dt/x2. This system goes over into our earlier 
results obtained using Noether’s theorem for a = 0. A distinctive feature of the new 
Ermakov system ( 5 . 5 )  is the fact that the invariant is not associated with the symmetry 
group of the differential equation for a # 0. This fact is somewhat surprising since 
the form of the equation of motion ( 5 . 5 ~ )  and of the auxiliary equation (5 .5b)  follow 
by imposing Lie symmetry, while the invariant (5 S c )  is obtained by combining these 
two equations in a simple manner. As far as we are aware, ( 5 . 5 )  is the first Ermakov 
system which has the property that its first integral is not invariant under the action 
of its Symmetry group. A generalisation of system (5.5) and the role of nonlinear 
superposition will be treated elsewhere. 

As a final remark, we note that the nonlinear equation ( 5 . 5 ~ )  is unusually well 
endowed with symmetries, having a total of four symmetry parameters. Three of 
them, forming a subgroup (Eliezer 1979, Leach 1980, 1981b, Lutzky 1978b), are 
attributed to the function a ( t ) ,  which satisfies the third-order equation (3.13, while 
the fourth is associated with the non-Noether parameter a. For the special case 
F(p)  = k p 2 ,  the equation of motion for the quadratically anharmonic oscillator has 
six symmetries. In this case, the two additional symmetries accrue to the function d ( t ) .  
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Note ndded in proof. When those functions a, b, c, d that appear in group operator (2.2) via (3.8), (3.9), 
(3.11) also appear in the differential equation whose symmetry is sought then the symmetry group for that 
equation is one dimensional. In contrast, when these functions do not appear in the equation under study 
then the arbitrary constants of integration ai in functions a, b, c ,  d lead to several independent group 
operators Xi which yield a multi-parameter Lie symmetry group. For example (3.24a), in which parameter 
a and the function x 2  = a appear, has only a one-parameter symmetry group corresponding to generator 
(3.25). On the other hand, if the right side of ( 3 . 2 4 ~ )  is simply l i p 3  that equation then has a three-parameter 
Lie symmetry group with a = O  in generator (3.25). Note that the multi-parameter groups for coupled 
systems discussed in this paper are therefore not Lie symmetry groups in the conventional sense. These 
groups are generated by allowing parameters in a differential equation to.vary as the same parameters in 
the group operator vary. Our multi-parameter group is therefore associated with a set of differential 
equations. Note that none of the calculations in this paper are affected by the foregoing remarks. 
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